Animal feed resources information system

Did you find the information you were looking for? Is it valuable to you? Feedipedia is encountering funding shortage. We need your help to keep providing reference-based feeding recommendations for your animals.
Would you consider donating? If yes, please click on the button Donate.

Any amount is the welcome. Even one cent is helpful to us!

Azevedo Junior et al., 2012. Rev. Bras. Zootec., 41 (4): 827-834

Document reference 
Azevedo Junior, R. L. de ; Olivo, C. J. ; de Bem, C. M. ; Aguirre, P. F. ; Quatrin, M. P. ; dos Santos, M. M. ; Bratz, V. F. ; Horst, T., 2012. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover. Rev. Bras. Zootec., 41 (4): 827-834

The objective of this research was to estimate three pasture-based systems mixed with elephantgrass + spontaneous growth species, annual ryegrass, for pasture-based system 1; elephantgrass + spontaneous growth species + forage peanut, for pasture-based system 2; and elephantgrass + spontaneous growth species + annual ryegrass + red clover, for pasture-based system 3. Elephantgrass was planted in rows 4 m apart from each other. During the cool-season, annual ryegrass was sown in the alleys between the rows of elephantgrass; forage peanut and red clover were sown in the alleys between the elephantgrass according to the respective treatment. The experimental design was totally randomized in the three treatments (pasture-based systems), two replicates (paddocks) in completely split-plot time (grazing cycles). Holstein cows receiving 5.5 kg-daily complementary concentrate feed were used in the evaluation. Pre-grazing forage mass, botanical composition and stocking rate were evaluated. Samples of simulated grazing were collected to analyze organic matter (OM), neutral detergent fiber (NDF), crude protein (CP) and organic matter in situ digestibility (OMISD). Nine grazing cycles were performed during the experimental period (341 days). The average dry matter values for pre-grazing and stocking rate were 3.34; 3.46; 3.79 t/ha, and 3.28; 3.34; 3.60 AU/ha for each respective pasture-based system. Similar results were observed between the pasture-based systems for OM, NDF, CP and OMISD. Considering forage mass, stocking rate and nutritive value, the pasture-based system intercropped with forage legumes presented better performance.

Citation key 
Azevedo Junior et al., 2012