Feedipedia
Animal feed resources information system
Feedipedia
Feedipedia

Did you find the information you were looking for? Is it valuable to you? Feedipedia is encountering funding shortage. We need your help to keep providing reference-based feeding recommendations for your animals.
Would you consider donating? If yes, please click on the button Donate.

Any amount is the welcome. Even one cent is helpful to us!

Clarkson et al., 2018. Insects, 9 (20)

Document reference 
Clarkson, C. ; Mirosa, M. ; Birch, J., 2018. Potential of extracted Locusta migratoria protein fractions as value-added ingredients. Insects, 9 (20)
Abstract 

Although locusts can be sustainably produced and are nutrient rich, the thought of eating them can be hard to swallow for many consumers. This paper aims to investigate the nutritional composition of Locusta migratoria, including the properties of extracted locust protein, contributing to limited literature and product development opportunities for industry. Locusts sourced from Dunedin, New Zealand, contained a high amount of protein (50.79% dry weight) and fat (34.93%), which contained high amounts of omega-3 (15.64%), creating a desirably low omega-3/omega-6 ratio of 0.57. Three protein fractions including; insoluble locust fraction, soluble locust fraction, and a supernatant fraction were recovered following alkali isoelectric precipitation methodology. Initially, proteins were solubilised at pH 10 then precipitated out at the isoelectric point (pH 4). All fractions had significantly higher protein contents compared with the whole locust. The insoluble protein fraction represented 37.76% of the dry weight of protein recovered and was much lighter in colour and greener compared to other fractions. It also had the highest water and oil holding capacity of 5.17 mL/g and 7.31 mL/g, possibly due to larger particle size. The high supernatant yield (56.60%) and low soluble protein yield (9.83%) was unexpected and could be a result of experimental pH conditions chosen.

Citation key 
Clarkson et al., 2018
Document license