Dehydrated sugar beet pulp is palatable and has a good nutritive value for all classes of cattle, and for sheep and goats. It is an outstanding source of energy in ruminant diets where it can profitably replace grains despite of a lower energy value. The valuable feature of dehydrated beet pulp is that it contains no starch and is thus at lower risk of acidosis than cereal grains (Zebeli et al., 2008). Main sugar beet pulp fibre (energy) is in the form of pectin (30% DM) (Yapo et al., 2007), which fermentates without producing lactate in the rumen and has thus pH stabilizing effects (Münnich et al., 2017). Dried sugar beet pulp has high water-holding capacity and is bulky. The large amount of water it retains in the digestive tract may have a laxative effect beneficial to breeding animals (Mavromichalis, 2016).
Energy
The rate of degradation of beet pulp in the rumen is fairly low: about 60% of effective degradability in situ of dry matter (DM) compared to cereals with quickly degradable starch (about 70-80%). For this reason concentrate feeds containing large proportion of beet pulp are less acidogenic than concentrates rich in rapidly degradable starch (Giger et al., 1988). In contrast, beet pulp DM effective degradability is a bit higher than that of maize grain and could result in higher methane production than maize (Ibáñez et al., 2015).
OM digestibility (OMD) of beet products is high (86.5 ± 4.5 %, n=68). The INRA 2018 tables has OMD = 84%, assuming a feeding level of 2% BW. This fairly high value of OMD is comparable to the values of high quality cereals, grain legumes and oil meals (OMD > 80%). There are systematic differences across feed tables on the OMD value of beet pulp products when data are corrected for their crude fibre or NDF contents. For instance they are systematically higher for the NorFor tables (88%) and lower for the NRC tables (78%).
In spite of their high NDF and crude fibre contents, beet pulp presents higher OMD values than other feeds, due to the very low level of lignin in the cell walls, which is typical of roots. As a consequence, the digestibility of the NDF is very high (> 80%) compared to most feeds (Torrent et al., 1994). For this reason beet pulp is considered as an ingredient rich in highly digestible fibre, such as maize bran, citrus pulp, palm oil meals, etc.
There is no systematic difference in OMD between dehydrated or pressed pulp. OMD can be predicted from its crude fibre content as follows:
OMD = 87.0 – 0.0084 (CF % DM)² (n = 21, RMSE = 0.6)
It can also be predicted from the NDF content, with a lesser accuracy:
OMD = 91.1 – 0.18 NDF % DM (n = 27, RMSE = 2.2)
The metabolizable energy value of beet pulp products for ruminants is around 11.2-11.5 MJ/kg DM in INRA tables (2018). This range of value is 85-95% of the metabolizable energy of ingredients known to be rich in energy such as maize, wheat, pea, soybean meal, etc.
Protein
Dehydrated sugar beet pulp has relatively low protein content similar to that of maize grain. In sacco degradability is low, 50 to 60%. The digestibility of the bypass protein fraction is estimated to be 85% which is less than the better cereals and oil meals (around 90-95%) but higher than dehydrated alfalfa (around 75%). The in situ methods assessing DM or N degradation of beet pulp may overestimate ruminally undegraded (RU) fraction and its intestinal effective digestibility (IED) if no correction for microbial contamination was taken into account (González et al., 2014).
The rumen protein balance of beet pulp products is negative (-30 to -50 g/kg DM) showing that they must be supplemented with resources providing fermentable protein to balance the diet and to optimize beet pulp nutritive value. The digestible protein content of beet pulp is rather low, around 85-90 g/kg DM and it had been recommended to suppplement sugar beet pulp by non-protein nitrogen (Leterme et al., 1992). According to the INRA tables (2018), due to differences in the in situ disappearance of N, there are differences between digestible protein (PDI) contents of dehydrated (94 g/kg DM), pressed (89 g) and dehydrated with molasses (82 g) sugar beets.
Cattle
Dried beet pulp and molassed beet pulp are fed mostly to dairy cattle, for which they are very suitable. Dried beet pulp can be up to 30% of the diet on a DM basis (Schafer, 2007).
Up to 3.5 kg a day of dried beet pulp can be given to milking animals, and fattening cattle can make good use of up to 5.5 kg of dried pulp daily. Dried beet pulp may be fed in moderate amounts to calves from the age of about four months, a common daily allowance being 0.5 kg per head. Consistently with what is written above, beet pulp is one of the ingredients which can be used to increase the dietary fibre without decreasing the energy density content in dairy cows (Beauchemin et al., 1991).
Dairy cows
Many studies have evaluated the effects of sugar beet pulp as a feedstuff for dairy cows. Most results remained inconclusive and the great variation in sugar beet pulp inclusion rates and diet compositions makes it difficult to compare these studies to a greater extent. A recent meta-analysis assessed the effect of feeding beet pulp to dairy cows. It reported that sugar beet pulp had contradictory effect on DM intake, sometimes having no effects, sometimes increasing or decreasing (Münnich et al., 2017). Other studies found that the effect of sugar beet pulp on DMI depended on its inclusion rate (Shahmoradi et al., 2016).
Inclusion levels of sugar beet pulp reported in meta-analysis could be grouped in three levels: low (1-100 g/kg DM), medium (101-200 g /kg DM) and high (over 201 g/kg DM). Increasing levels of sugar beet pulp did not change milk yield but increased the fat-corrected milk yield (4% FCM), the maximum level of fat corrected milk obtained being at medium level of sugar beet pulp (Münnich et al., 2017). Milk fat yield and milk fat percentage were also shown to increase and the maximum increase was also at medium sugar beet pulp level (101-200 g/kg DM). Milk protein and milk lactose were not affected by sugar beet pulp at any level.
An important feature pointed out by the meta-analysis was that sugar beet pulp had generally positive effects on DM intake for cows with relatively low DM intake and had negative effect on cows with high intake level (Münnich et al., 2017).
In early studies, in the 1930's in the USA, sugar beet pulp had been reported to be responsible for milk fishy taint and for this reason had been suggested to be limited to 4.1 kg/d (basis unknown), however this problem was not observed at higher levels (up to 50% dietary level DM basis) reported later (Castle, 1972; Castle et al., 1966; Davies, 1936).
Beef cattle
Dried molassed beet pulp could be included in steers (368 kg) rations at levels ranging from 11 to 33% of dietary DM in order to gradually replace barley grain in low forage based diet. It was shown that dried sugar beet pulp had beneficial effect on chewing behaviour and on ruminal ammonia concentration (decreased). Health parameters of steers were not altered by the use of sugar beet pulp as a barley replacer (Mojtahedi et al., 2011).
It was possible to finish castrated Tudanca bulls fed on pasture with a supplement of 1,6 kg barley and 1 kg of dehydrated sugar beet pulp (Serrano et al., 2015). Crossbred Aberdeen Angus x Nordic Red bulls fed on a silage (timothy grass or red clover) basal diet and receiving 30% molassed beet pulp (DM basis) as a part of the concentrate had higher DM intake (+5%) and higher carcass weight (+3%). Sugar beet pulp had no effect on their fat score (Pesonen et al., 2014). In Belgium, steers (516 kg) fed either on cereal grains or dried sugar beet pulp had similar DM intake but animals fed on sugar beet pulp had significantly high weight gains (+155 g/head/d) in 3 different breeds (Charolais, Blonde d'Aquitaine and Blanc Bleu Belge) and showed a trend to improved FCR (Decruyenaere et al., 2006).
This kind of results had not been achieved earlier, when crossbred steers fed ad libitum on a low protein big bale silage (made of perennial ryegrass, timothy grass and white clover) were supplemented with molassed beet pulp alone at 0.66 kg DM/day (Rouzbehan et al., 1996). It was necessary to add fishmeal as a concentrate (at either 0.12 kg DM/day or 0.23 kg DM/day) in order to increase liveweight gain and obtain moderate growth performance of 0.6 kg/day (Rouzbehan et al., 1996). It was reported that molassed sugar beet pulp at high or low level (3 kg/day or 1.5 kg/day) should be added soybean meal for optimal intake and liveweight gain in growing steers (Keane, 2005).
Sheep
Dried sugar beet pulp could be used at high level (up to 93% DM basis) in sheep diet to supplement low quality roughage (wheat straw) (Vanabelle et al., 1996; Flachowsky et al., 1993).
As for large ruminants, the use of sugar beet pulp prevented acidosis in sheep and high inclusion levels increased fibre and NDF digestibilities (Flachowsky et al., 1993). In Egypt, adult rams (53 kg) could be fed on dried sugar beet pulp (350 g/day) added or not with molasses (250 g/d), urea (15g/d), or berseem. No significant difference could be found among the different diets but digestibility, feeding value and blood composition were better when sugar beet pulp were added molasses or molasses + urea (Abdelhamid, 1992).
In Pakistan, Barki lambs (30 kg BW) received sugar beet pulp in order to replace 25, 50, 75 or 100% maize grain. The highest inclusion rates of sugar beet pulp resulted in higher TDN, digestible energy, metabolizable energy and digestible protein. There was only a slight difference between sheep fed on control (100% maize grain) and sheep fed on the highest levels of sugar beet pulp. It was concluded that sugar beet pulp could completely replace maize grain in growing sheep diet (Mahmoud et al., 2016).
Similarly, in India, it was shown that growing lambs could be fed on molassed sugar beet pulp rather than barley without modifying liveweight gain, feed intake or feed conversion ratio or animal health parameters (Bilal, 2009).
However, it was shown that 7-8 months-old lambs receiving 470 g/d (as fed) molassed sugar beet pulp in a 50:50 mixture with rolled barley rather than a 80:20 mixture had faster growth due to faster digestion, higher DM intake and better feed conversion (Rouzbehan et al., 1994). Later results confirmed the usefulness of keeping at least 25% barley grain in growing lamb diet (Mandebvu et al., 1999)
Finishing lambs were fed on 43% sugar beet pulp in order to replace barley in an attempt to prevent accumulation of trans-10-18:1 fatty acid in lamb meat. Sugar beet pulp had no effect on animal growth performance, feed intake, carcass characteristics but it increased redness and yellowness of the meat. However, sugar beet pulp could not prevent the accumulation of the trans fatty acid (Costa et al., 2017)
Ammonia-treated sugar beet pulp
It was shown that treatment of sugar beet pulp with ammonia could enhance sugar beet pulp nutritive value. It doubled N content, increased CP digestibility from 37 to 64% and crude fibre digestibility from 76.1 to 84.8%. Ammonia treatment increased N retention as 40% of the ammonia used was retained (Vanabelle et al., 1996).
Goats
Goats can be fed on dried sugar beet pulp included in their ration at levels varying from 20 to 33% (DM basis) (Monzon-Gil et al., 2010; Rapetti et al., 2004; Gallo et al., 1999; Andrighetto et al., 1989). Goats were reported to have a clear preference for sugar beet pulp (Andrighetto et al., 1989).